Bayesian ‘old evidence’ problems

9 February, 2019 at 21:08 | Posted in Theory of Science & Methodology | Leave a comment

debWhy is the subjective Bayesian supposed to have an old evidence problem?

The allegation … goes like this: If probability is a measure of degree of belief, then if an agent already knows that e has occurred, the agent must assign P(e) the value 1. Hence P(e|H) is assigned a value of 1. But this means no Bayesian support accrues from e. For if P(e) = P(e|H) = 1, then P(H|e) = P(H). The Bayesian condition for support is not met …

How do subjective Bayesians respond to the charge that they have an old evidence problem? The standard subjective Bayesian response is  …

“The Bayesian interprets P(e|H) as how likely you think e would be were h to be false” …

But many people — Bayesians included — are not too clear about how this “would be” probability is supposed to work.

Yes indeed — how is such a “would be” probability to be interpreted? The only feasible solution is arguably to restrict the Bayesian calculus to problems where well-specified nomological machines are operating. Throwing a die or pulling balls from an urn is fine, but then the Bayesian calculus would of course not have much to say about science …

Leave a Comment »

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at
Entries and comments feeds.