## The arrow of time in a non-ergodic world

13 February, 2018 at 09:00 | Posted in Theory of Science & Methodology | 3 CommentsFor the vast majority of scientists, thermodynamics had to be limited

strictlyto equilibrium. That was the opinion of J. Willard Gibbs, as well as of Gilbert N. Lewis. For them, irreversibility associated with unidirectional time was anathema …I myself experienced this type of hostility in 1946 … After I had presented my own lecture on irreversible thermodynamics, the greatest expert in the field of thermodynamics made the following comment: ‘I am astonished that this young man is so interested in nonequilibrium physics. Irreversible processes are transient. Why not wait and study equilibrium as everyone else does?’ I was so amazed at this response that I did not have the presence of mind to answer: ‘But we are all transient. Is it not natural to be interested in our common human condition?’

Time is what prevents everything from happening at once. To simply assume that economic processes are ergodic and concentrate on ensemble averages — and hence* *in any relevant sense timeless — is not a sensible way for dealing with the kind of genuine uncertainty that permeates real-world economies.

Ergodicity and the all-important difference between time averages and ensemble averages are difficult concepts — so let me try to explain the meaning of these concepts by means of a couple of simple examples.

Let’s say you’re offered a gamble where on a roll of a fair die you will get €10 billion if you roll a six, and pay me €1 billion if you roll any other number.

Would you accept the gamble?

If you’re an economics student you probably would, because that’s what you’re taught to be the only thing consistent with being **rational**. You would arrest the arrow of time by imagining six different “parallel universes” where the independent outcomes are the numbers from one to six, and then weight them using their stochastic probability distribution. Calculating the expected value of the gamble – **the ensemble average** – by averaging on all these weighted outcomes you would actually be a moron if you didn’t take the gamble (the expected value of the gamble being 5/6*€0 + 1/6*€10 billion = €1.67 billion)

If you’re not an economist you would probably trust your common sense and decline the offer, knowing that a large risk of bankrupting one’s economy is not a very rosy perspective for the future. Since you can’t really arrest or reverse the arrow of time, you know that once you have lost the €1 billion, it’s all over. The large likelihood that you go bust weights heavier than the 17% chance of you becoming enormously rich. By computing **the time average** – imagining one real universe where the six different but dependent outcomes occur consecutively – we would soon be aware of our assets disappearing, and *a fortiori* that it would be **irrational** to accept the gamble.

Why is the difference between ensemble and time averages of such importance in economics? Well, basically, because when assuming the processes to be ergodic, ensemble and time averages are identical.

Assume we have a market with an asset priced at €100. Then imagine the price first goes up by 50% and then later falls by 50%. The* ensemble average *for this asset would be €100 – because we here envision two parallel universes (markets) where the asset price falls in one universe (market) with 50% to €50, and in another universe (market) it goes up with 50% to €150, giving an average of 100 € ((150+50)/2). The time average for this asset would be 75 € – because we here envision one universe (market) where the asset price first rises by 50% to €150, and then falls by 50% to €75 (0.5*150).

From the ensemble perspective nothing really, on average, happens. From the time perspective lots of things really, on average, happen. Assuming ergodicity there would have been no difference at all.

On a more economic-theoretical level, the difference between ensemble and time averages also highlights the problems concerning the neoclassical theory of expected utility.

When applied to the neoclassical theory of expected utility, one thinks in terms of “parallel universe” and asks what is the expected return of an investment, calculated as an average over the “parallel universe”? In our coin tossing example, it is as if one supposes that various “I” are tossing a coin and that the loss of many of them will be offset by the huge profits one of these “I” does. But this ensemble average does not work for an individual, for whom a time average better reflects the experience made in the “non-parallel universe” in which we live.

Time averages give a more realistic answer, where one thinks in terms of the only universe we actually live in, and ask what is the expected return of an investment, calculated as an average over time.

Since we cannot go back in time – entropy and the arrow of time make this impossible – and the bankruptcy option is always at hand (extreme events and “black swans” are always possible) we have nothing to gain from thinking in terms of ensembles.

Actual events follow a fixed pattern of time, where events are often linked in a multiplicative process (as e. g. investment returns with “compound interest”) which is basically non-ergodic.

Instead of arbitrarily assuming that people have a certain type of utility function – as in the neoclassical theory – time average considerations show that we can obtain a less arbitrary and more accurate picture of real people’s decisions and actions by basically assuming that time is irreversible. When are assets are gone, they are gone. The fact that in a parallel universe it could conceivably have been refilled, is of little comfort to those who live in the one and only possible world that we call the real world.

Our coin toss example can be applied to more traditional economic issues. If we think of an investor, we can basically describe his situation in terms of our coin toss. What fraction of his assets should an investor – who is about to make a large number of repeated investments – bet on his feeling that he can better evaluate an investment (p = 0.6) than the market (p = 0.5)? The greater the fraction, the greater is the leverage. But also – the greater is the risk. Letting p be the probability that his investment valuation is correct and (1 – p) is the probability that the market’s valuation is correct, it means that he optimizes the rate of growth on his investments by investing a fraction of his assets that is equal to the difference in the probability that he will “win” or “lose”. This means that he at each investment opportunity (according to the so-called Kelly criterion) is to invest the fraction of 0.6 – (1 – 0.6), i.e. about 20% of his assets (and the optimal average growth rate of investment can be shown to be about 2% (0.6 log (1.2) + 0.4 log (0.8))).

Time average considerations show that because we cannot go back in time, we should not take excessive risks. High leverage increases the risk of bankruptcy. This should also be a warning for the financial world, where the constant quest for greater and greater leverage – and risks – creates extensive and recurrent systemic crises. A more appropriate level of risk-taking is a necessary ingredient in a policy to come to curb excessive risk-taking.

To understand real world “non-routine” decisions and unforeseeable changes in behaviour, ergodic probability distributions are of no avail. In a world full of genuine uncertainty — where real historical time rules the roost — the probabilities that ruled the past are not necessarily those that will rule the future.

Irreversibility can no longer be identified with a mere appearance that would disappear if we had perfect knowledge … Figuratively speaking, matter at equilibrium, with no arrow of time, is ‘blind,’ but with the arrow of time, it begins to ‘see’ … The claim that the arrow of time is ‘only phenomenologicall,’ or subjective, is therefore absurd. We are actually the children of the arrow of time, of evolution, not its progenitors.

Ilya Prigogine

## 3 Comments »

RSS feed for comments on this post. TrackBack URI

### Leave a Reply

Create a free website or blog at WordPress.com.

Entries and comments feeds.

My story of how a financier can make money off your bet no matter what the outcome:

Put off the bet until some fixed time in the future. Borrow $10 billion. Swap into another currency to get a higher return than your borrowing costs (since covered interest parity is in violation). Or use linear algebra to generate a portfolio that will guarantee you a minimum payout in the market. Make sure your minimum payout is enough to buy insurance on the bet, plus a little for your time.

If you lose the bet, insurance pays and you have that covered already. If you win, you have the profit you made on the borrowed $10 billion, minus the cost of insurance, plus the $10 billion winnings.

You can’t lose.

Comment by Robert Mitchell— 14 February, 2018 #

Sounds lke 2007-2008 redux 😉

Comment by Rob Reno— 17 February, 2018 #

Indeed. Perry Mehrling’s story (in his “Economics of Money and Banking” MOOC, available on his website perrymehrling.com) says the insurance piece broke in 2007-2008: AIG for example was using Mortgage-Backed Security assets (i.e., future promises) to guarantee against MBS defaults. When MBS were devalued to $0 by labile traders panicking about chatroom rumors (probably spread by short-sellers …), the Fed stepped in with the Maiden Lane programs to provide as much liquidity as AIG needed to fulfill its obligations to Goldman Sachs for example. GS had written into its contract that payments would be immediate and penalties added in the case of a ratings downgrade of AIG so GS, which had properly insured against MBS failures, made out quite well. (UBS had similar penalties and immediate payment provisions in case of ratings downgrade in its Interest Rate Swap contracts with the city of Detroit; since Detroit wasn’t a bank, however, the Fed did not offer it the same cheap, unlimited liquidity that AIG and others got …)

Apparently, they fixed the insurance piece, and we’re right back on our merry money-creating ways, watching housing prices inflate as buyers get more and more money created by keystroke in the world financial sector …

Comment by Robert Mitchell— 17 February, 2018 #