## Economic models — chameleons and theoretical cherry picking

28 Mar, 2014 at 20:07 | Posted in Economics, Theory of Science & Methodology | 6 CommentsChameleons arise and are often nurtured by the following dynamic. First a bookshelf model is constructed that involves terms and elements that seem to have some relation to the real world and assumptions that are not so unrealistic that they would be dismissed out of hand. The intention of the author, let’s call him or her “Q,” in developing the model may to say something about the real world or the goal may simply be to explore the implications of making a certain set of assumptions. Once Q’s model and results become known, references are made to it, with statements such as “Q shows that X.” This should be taken as short-hand way of saying “Q shows that under a certain set of assumptions it follows (deductively) that X,” but some people start taking X as a plausible statement about the real world. If someone skeptical about X challenges the assumptions made by Q, some will say that a model shouldn’t be judged by the realism of its assumptions, since all models have assumptions that are unrealistic. Another rejoinder made by those supporting X as something plausibly applying to the real world might be that the truth or falsity of X is an empirical matter and until the appropriate empirical tests or analyses have been conducted and have rejected X, X must be taken seriously. In other words, X is innocent until proven guilty. Now these statements may not be made in quite the stark manner that I have made them here, but the underlying notion still prevails that because there is a model for X, because questioning the assumptions behind X is not appropriate, and because the testable implications of the model supporting X have not been empirically rejected, we must take X seriously. Q’s model (with X as a result) becomes a chameleon that avoids the real world filters.

The best way to illustrate what chameleons are is to give some actual examples …

In April 2012 Harry DeAngelo and René Stulz circulated a paper entitled “Why High Leverage is Optimal for Banks.” The title of the paper is important here: it strongly suggests that the authors are claiming something about actual banks in the real world. In the introduction to this paper the authors explain what their model is designed to do:

“To establish that

high bank leverageis the natural (distortion-free) result of intermediation focused on liquid-claim production, the model rules out agency problems, deposit insurance, taxes, and all other distortionary factors. By positing these idealized conditions, the model obviously ignores some important determinants of bank capital structure in the real world. However, in contrast to the MM framework – and generalizations that include only leverage-related distortions – it allows a meaningful role for banks asproducers of liquidityandshows clearlythat, if one extends the MM model to take that role into account, it isoptimal for banks to have high leverage.” [emphasis added]Their model, in other words, is designed to show that if we rule out many important things and just focus on one factor alone, we obtain the particular result that banks should be highly leveraged. This argument is for all intents and purpose analogous to the argument made in another paper entitled “Why High Alcohol Consumption is Optimal for Humans” by Bacardi and Mondavi. In the introduction to their paper Bacardi and Mondavi explain what their model does:

“To establish that

high intake of alcoholis the natural (distortion free) result of human liquid-drink consumption, the model rules out liver disease, DUIs, health benefits, spousal abuse, job loss and all other distortionary factors. By positing these idealized conditions, the model obviously ignores some important determinants of human alcohol consumption in the real world. However, in contrast to the alcohol neutral framework – and generalizations that include only overconsumption- related distortions – it allows a meaningful role for humans asproducers of that pleasant “buzz” one gets by consuming alcohol, andshows clearlythat if one extends the alcohol neutral model to take that role into account, it isoptimal for humans to be drinking all of their waking hours.”[emphasis added]Deangelo and Stulz model is clearly a bookshelf theoretical model that would not pass through any reasonable filter if we want to take its results and apply them directly to the real world. In addition to ignoring much of what is important (agency problems, taxes, systemic risk, government guarantees, and other distortionary factors), the results of their main model are predicated on the assets of the bank being riskless and are based on a posited objective function that is linear in the percentage of assets funded with deposits. Given this the authors naturally obtain a corner solution with assets 100% funded by deposits. (They have no explicit model addressing what happens when bank assets are risky, but they contend that bank leverage should still be “high” when risk is present) …

DeAngelo and Stulz paper is a good illustration of my claim that one can generally develop a theoretical model to produce any result within a wide range. Do you want a model that produces the result that banks should be 100% funded by deposits? Here is aset of assumptions and an argument that will give you that result. That such a model exists tells us very little. By claiming relevance without running it through the filter it becomes a chameleon …

Whereas some theoretical models can be immensely useful in developing intuitions, in essence a theoretical model is nothing more than an argument that a set of conclusions follows from a given set of assumptions. Being logically correct may earn a place for a theoretical model on the bookshelf, but when a theoretical model is taken off the shelf and applied to the real world, it is important to question whether the model’s assumptions are in accord with what we know about the world. Is the story behind the model one that captures what is important or is it a fiction that has little connection to what we see in practice? Have important factors been omitted? Are economic agents assumed to be doing things that we have serious doubts they are able to do? These questions and others like them allow us to filter out models that are ill suited to give us genuine insights. To be taken seriously models should pass through the real world filter.

Chameleons are models that are offered up as saying something significant about the real world even though they do not pass through the filter. When the assumptions of a chameleon are challenged, various defenses are made (e.g., one shouldn’t judge a model by its assumptions, any model has equal standing with all other models until the proper empirical tests have been run, etc.). In many cases the chameleon will change colors as necessary, taking on the colors of a bookshelf model when challenged, but reverting back to the colors of a model that claims to apply the real world when not challenged.

Reading Pfleiderer’s absolutely fabulous gem of an article reminded me of what **H. L. Mencken** once famously said:

There is always an easy solution to every problem – neat, plausible and wrong.

Pfleiderer’s perspective may be applied to many of the issues involved when modeling complex and dynamic economic phenomena. Let me take just one example — simplicity.

When it come to modeling I do see the point emphatically made time after time by e. g. Paul Krugman in simplicity — as long as it doesn’t impinge on our truth-seeking. “Simple” macroeconomic models may of course be an informative heuristic tool for research. But if practitioners of modern macroeconomics do not investigate and make an effort of providing a justification for the credibility of the simplicity-assumptions on which they erect their building, it will not fulfill its tasks. Maintaining that economics is a science in the “true knowledge” business, I remain a skeptic of the pretences and aspirations of “simple” macroeconomic models and theories. So far, I can’t really see that e. g. “simple” microfounded models have yielded very much in terms of *realistic* and *relevant* economic knowledge.

All empirical sciences use simplifying or unrealistic assumptions in their modeling activities. That is not the issue – *as long as the assumptions made are not unrealistic in the wrong way or for the wrong reasons*.

But models do not only face theory. They also have to look to the world. Being able to model a “credible world,” a world that somehow could be considered real or *similar* to the real world, is not the same as investigating the real world. Even though — as Pfleiderer acknowledges — all theories are false, since they simplify, they may still possibly serve our pursuit of truth. But then they cannot be unrealistic or false in *any* way. The falsehood or unrealisticness has to be* qualified*.

Explanation, understanding and prediction of real world phenomena, relations and mechanisms therefore cannot be grounded on *simpliciter* assuming simplicity. If we cannot show that the mechanisms or causes we isolate and handle in our models are stable, in the sense that what when we export them from are models to our target systems they do not change from one situation to another, then they – considered “simple” or not – only hold under *ceteris paribus* conditions and *a fortiori* are of limited value for our understanding, explanation and prediction of our real world target system.

The obvious ontological shortcoming of a basically epistemic – rather than ontological – approach, is that “similarity” or “resemblance” *tout court* do not guarantee that the correspondence between model and target is interesting, relevant, revealing or somehow adequate in terms of mechanisms, causal powers, capacities or tendencies. No matter how many convoluted refinements of concepts made in the model, if the simplifications made do not result in models similar to reality in the appropriate respects (such as structure, isomorphism etc), the surrogate system becomes a *substitute *system that does not bridge to the world but rather misses its target.

Constructing simple macroeconomic models somehow seen as “successively approximating” macroeconomic reality, is a rather unimpressive attempt at legitimizing using fictitious idealizations for reasons more to do with model tractability than with a genuine interest of understanding and explaining features of real economies. Many of the model assumptions standardly made by neoclassical macroeconomics – simplicity being one of them – are *restrictive* rather than *harmless *and could *a fortiori* anyway not in any sensible meaning be considered approximations at all.

If economists aren’t able to show that the mechanisms or causes that they isolate and handle in their “simple” models are stable in the sense that they do not change when exported to their “target systems”, they do only hold under *ceteris paribus* conditions and are *a fortiori *of limited value to our understanding, explanations or predictions of real economic systems.

That Newton’s theory in most regards is simpler than Einstein’s is of no avail. Today Einstein has replaced Newton. The ultimate arbiter of the scientific value of models cannot be simplicity.

As scientists we have to get our priorities right. Ontological under-labouring has to precede epistemology.

**Footnote: **And of course you understood that the Bacardi/Mondavi paper is fictional. Or?

## 6 Comments

Sorry, the comment form is closed at this time.

Blog at WordPress.com.

Entries and comments feeds.

A long way of making the same point made by my favorite joke about economist: A physicist, mathematician and economist are stranded on a deserted island, with a decent stock of canned food, but no ready means of opening the cans. The physicist proposes the search for a sharp, reasonably long object, and use it as a lever to pry the can open. The mathematician calls it a good idea, but says some attention should be paid to calculate whether the object of choice can produce sufficient leverage. Snarkily, the economists tells them they are overthinking the problem, and there is a far simpler solution: “FIRST OFF, let us assume we have a can-opener…”

Comment by Tom Cobb— 28 Mar, 2014 #

Truly genial, thanks for to write it.

Comment by robertoviera1— 29 Mar, 2014 #

I was going to bring this to your attention. Great article. He has power point presentation in which he deconstructs a formal model that is equally brilliant!

Comment by dwayne woods— 29 Mar, 2014 #

Sounds interesting. Do you have a link?

Comment by Lars Syll— 29 Mar, 2014 #

Sorry I did not see your message sooner. In any case, you located it. Just brilliant!

Comment by dwayne woods— 29 Mar, 2014 #

” And of course you understood that the Bacardi/Mondavi paper is fictional. ”

Yes , of course I did.

I just ran the Google search for kicks.

Comment by Marko— 30 Mar, 2014 #