Economics – a science with amnesia

29 December, 2012 at 12:31 | Posted in Economics | Leave a comment

A couple of days ago yours truly had a piece on why mainstream economists have tended to go astray in their tool-sheds and actually thereby have contributed to causing today’s economic crisis rather than to solving it.

J Bradford DeLong – professor of economics at Berkeley – writes on a related theme on Project Syndicate:

It is the scale of the catastrophe that astonishes me. But what astonishes me even more is the apparent failure of academic economics to take steps to prepare itself for the future. “We need to change our hiring patterns,” I expected to hear economics departments around the world say in the wake of the crisis.

The fact is that we need fewer efficient-markets theorists and more people who work on microstructure, limits to arbitrage, and cognitive biases. We need fewer equilibrium business-cycle theorists and more old-fashioned Keynesians and monetarists. We need more monetary historians and historians of economic thought and fewer model-builders …

BradfordDelong

Yet that is not what economics departments are saying nowadays.

Perhaps I am missing what is really going on. Perhaps economics departments are reorienting themselves after the Great Recession in a way similar to how they reoriented themselves in a monetarist direction after the inflation of the 1970’s. But if I am missing some big change that is taking place, I would like somebody to show it to me.

Perhaps academic economics departments will lose mindshare and influence to others – from business schools and public-policy programs to political science, psychology, and sociology departments. As university chancellors and students demand relevance and utility, perhaps these colleagues will take over teaching how the economy works and leave academic economists in a rump discipline that merely teaches the theory of logical choice.

Or perhaps economics will remain a discipline that forgets most of what it once knew and allows itself to be continually distracted, confused, and in denial. If that were that to happen, we would all be worse off.

Håller du inte måttet? Det gör inget. Du är kränkt!

29 December, 2012 at 10:56 | Posted in Varia | 14 Comments

Fick du för dåliga betyg? Höll inte uppsatsen måttet? Vågade någon tala om för dig att du gjort ett dåligt arbete eller inte ansträngt dig nog? Det gör inget! För nu för tiden kan alla slö, slappa, lata och likgiltiga komma undan det egna ansvaret med tidens egen deus ex machina – de är kränkta. Och simsalabim är problemet inte längre deras utan den som hade fräckheten att våga påtala bristerna och undermåligheten. O tempora, o mores!

kränkt

Resisting intuition

28 December, 2012 at 13:40 | Posted in Varia | 6 Comments

One of the main functions of System 2 is to monitor and control thoughts and actions “suggested” by System 1 … For an example, here is a simple puzzle. Do not try to solve it but listen to your intuition:

     A bat and ball cost $1.10.

     The bat costs one dollar more than the ball.

     How much does the ball cost?

THINKING-FAST-AND-SLOW
 
A number came to your mind. The number, of course, is 10: 10 cents. The distinctive mark of this easy puzzle is that it evokes an answer that is intuitive, appealing, and wrong … The right answer is 5 cents.

Annie “Margaret Thatcher” Lööf i välförtjänt utförsbacke

27 December, 2012 at 12:09 | Posted in Politics & Society | 5 Comments

annielööfEnligt en Sifo-under-sökning beställd av Aftonbladet rasar nu förtroendet för center-ledaren Annie Lööf.

Nu har bara var femte väljare stort eller mycket stort förtroende för henne.

För ett år sedan var det nästan en tredjedel

Förvånande? Knappast – för få svenskar tänder på vad fru Lööf argumenterat och motionerat för på senare år:

Inför plattskatt (lägre skatt för höginkomsttagare)
Avskaffa lagen om anställningsskydd
Inskränk strejkrätten
Inför marknadshyror
Sälj ut SvT och SR
Sverige bör gå med i NATO
Bygg ut kärnkraften

Med en sådan politisk agenda är det naturligt att centerns alla väljare snart får plats på Stureplan.

Verkligheten börjar nu komma ikapp vår egen Margaret Thatcher. Det börjar dra ihop sig till ett uppvaknande ur den nyliberala mardröm denna politiska broiler och klyschmakare lyckats dra ner det en gång så stolta centerpartiet i …

Juloratoriet

25 December, 2012 at 14:00 | Posted in Varia | Leave a comment

Bedövande vackert och nästintill outhärdligt smärtsamt berörande.
Stefan Nilsson har skrivit musiken till filmatiseringen av Göran Tunströms episka mästerverk Juloratoriet.
 

The Angels’ Share

25 December, 2012 at 10:55 | Posted in Varia | 3 Comments

 

Little Drummer Boy

24 December, 2012 at 11:53 | Posted in Varia | Leave a comment

 

Jussi Björling – O Holy Night

23 December, 2012 at 18:45 | Posted in Varia | 1 Comment

 

Why econometrics still hasn’t delivered (wonkish)

23 December, 2012 at 12:04 | Posted in Statistics & Econometrics | 3 Comments

In the article The Scientific Model of Causality renowned econometrician and Nobel laureate James Heckman writes (emphasis added):

 A model is a set of possible counterfactual worlds constructed under some rules. The rules may be laws of physics, the consequences of utility maximization, or the rules governing social interactions … A model is in the mind. As a consequence, causality is in the mind.

Even though this is a standard view among econometricians, it’s – at least from a realist point of view – rather untenable. The reason we as scientists are interested in causality is that it’s a part of the way the world works. We represent the workings of causality in the real world by means of models, but that doesn’t mean that causality isn’t a fact pertaining to relations and structures that exist in the real world. If it was only “in the mind,” most of us couldn’t care less.

icebergsThe reason behind Heckman’s and most other econometricians’ nominalist-positivist view of science and models, is the belief that science can only deal with observable regularity patterns of a more or less lawlike kind. Only data matters and trying to (ontologically) go beyond observed data in search of the underlying real factors and relations that generate the data is not admissable. All has to take place in the econometric mind’s model since the real factors and relations according to the econometric (epistemologically based) methodology are beyond reach since they allegedly are both unobservable and unmeasurable. This also means that instead of treating the model-based findings as interesting clues for digging deepeer into real structures and mechanisms, they are treated as the end points of the investigation. Or as Asad Zaman puts it in Methodological Mistakes and Econometric Consequences:

Instead of taking it as a first step, as a clue to explore, conventional econometric methodology terminates at the discovery of a good fit … Conventional econometric methodology is a failure because it is merely an attempt to find patterns in the data, without any tools to assess whether or not the given pattern reflects some real forces which shape the data.

The critique put forward here is in line with what mathematical statistician David Freedman writes in  Statistical Models and Causal Inference (2010):

In my view, regression models are not a particularly good way of doing empirical work in the social sciences today, because the technique depends on knowledge that we do not have. Investigators who use the technique are not paying adequate attention to the connection – if any – between the models and the phenomena they are studying. Their conclusions may be valid for the computer code they have created, but the claims are hard to transfer from that microcosm to the larger world …

Given the limits to present knowledge, I doubt that models can be rescued by technical fixes. Arguments about the theoretical merit of regression or the asymptotic behavior of specification tests for picking one version of a model over another seem like the arguments about how to build desalination plants with cold fusion and the energy source. The concept may be admirable, the technical details may be fascinating, but thirsty people should look elsewhere …

Causal inference from observational data presents may difficulties, especially when underlying mechanisms are poorly understood. There is a natural desire to substitute intellectual capital for labor, and an equally natural preference for system and rigor over methods that seem more haphazard. These are possible explanations for the current popularity of statistical models.

Indeed, far-reaching claims have been made for the superiority of a quantitative template that depends on modeling – by those who manage to ignore the far-reaching assumptions behind the models. However, the assumptions often turn out to be unsupported by the data. If so, the rigor of advanced quantitative methods is a matter of appearance rather than substance.

Econometrics is  basically a deductive method. Given  the assumptions (such as manipulability, transitivity, Reichenbach probability principles, separability, additivity, linearity etc) it delivers deductive inferences. The problem, of course, is that we will never completely know when the assumptions are right. Real target systems are seldom epistemically isomorphic to axiomatic-deductive models/systems, and even if they were, we still have to argue for the external validity of  the conclusions reached from within these epistemically convenient models/systems. Causal evidence generated by statistical/econometric procedures like regression analysis may be valid in “closed” models, but what we usually are interested in, is causal evidence in the real target system we happen to live in.

Most advocates of econometrics and regression analysis want  to have deductively automated answers to  fundamental causal questions. Econometricians think – as David Hendry expressed it in Econometrics – alchemy or science? (1980) –  they “have found their Philosophers’ Stone; it is called regression analysis and is used for transforming data into ‘significant results!'” But as David Freedman poignantly notes in Statistical Models: “Taking assumptions for granted is what makes statistical techniques into philosophers’ stones.” To apply “thin” methods we have to have “thick” background knowledge of  what’s going on in the real world, and not in idealized models. Conclusions  can only be as certain as their premises – and that also applies to the quest for causality in econometrics and regression analysis.

Without requirements of depth, explanations most often do not have practical significance. Only if we search for and find fundamental structural causes, can we hopefully also take effective measures to remedy problems like e.g. unemployment, poverty, discrimination and underdevelopment. A social science must try to establish what relations exist between different phenomena and the systematic forces that operate within the different realms of reality. If econometrics is to progress, it has to abandon its outdated nominalist-positivist view of science and the belief that science can only deal with observable regularity patterns of a more or less law-like kind. Scientific theories ought to do more than just describe event-regularities and patterns – they also have to analyze and describe the mechanisms, structures, and processes that give birth to these patterns and eventual regularities.

Sporadic blogging

22 December, 2012 at 12:35 | Posted in Varia | Leave a comment

Christmas is here again – and with five kids in the family, blogging can’t have top priority. Regular blogging will be resumed late next week.

Winter is not my season, so I’m already longing for when the view from my library once again looks like this:
 
clemens

Next Page »

Create a free website or blog at WordPress.com. | The Pool Theme.
Entries and comments feeds.